Experimentation of Different Oyster Growing Methods and Spat Retention in Oyster Bay, Florida

A. Wynna, B. Ballarda, M. Marquezb, C. Jagoeb

aWakulla Environmental Institute, Tallahassee Community College, Crawfordville, FL
bSchool of the Environment, Florida A&M University, Tallahassee, FL
Research Site
Oyster Bay, Florida
WEI 5.5-acre aquaculture research site
Oyster Growing Methods

- **Objective:**
 - Compare OysterGro Floating Cages vs Seapa Hybrid Cages
 - 20,000 Triploid (3n) oysters

- **Measure:**
 - Length
 - Oyster Tissue Dry Weight
 - Practicality of each Growing Method
Oyster Growth
Length vs Days

One Way RM ANOVA
\(F_{(1,109)} = 2.038, \ p = 0.156 \)
*Not Significant

Floating: \(r^2 = 0.68, \ p < 0.001; \ y = 23.7 + 10.11 \ln x \)
Seapa: \(r^2 = 0.68, \ p < 0.001; \ y = 23.7 + 10.71 \ln x \)
Oyster Growth
Tissue DW vs Days

Floating: $r^2 = 0.41$, $p < 0.001$; $y = 23.7 + 98.15 \ln x$
Seapa: $r^2 = 0.46$, $p < 0.001$; $y = 23.7 + 138.64 \ln x$

One Way RM ANOVA
$F_{(1,105)} = 37.792$, $p < 0.001$
*Significant Difference
Oyster Growth

Length vs Tissue DW

One Way RM ANOVA

\[F_{(1,109)} = 2.038, \ p = 1.243 \]

Not Significant
Conclusions

- **Length growth rates**
 - Not significant

- **Oyster tissue biomass**
 - Significant

- **Length vs oyster tissue biomass**
 - Not Significant

- **Practicality**
 - Lost 9 of 12 Seapa Hybrid Cages during Hurricane Michael
 - Lower mortality in OysterGro cages
 - Higher mortality in Seapa due to increased temps / design.
Objective:
- Determine the effects farms utilizing diploid (2n) oysters have on the wild oyster population.

Measure:
- Oyster recruitment on cement oyster domes.
Mean Low tide

4 Random samples (domes) per treatment monthly

4 25cm² quadrat measures (replicates) per sample

Oyster Cover analyzed using ImageJ
Results

• Predation changed designed

• Depth comparison in oyster percent cover

• One Way RM ANOVA:
 • Arc sin x+1 transformation
 • Significant difference
 • $F_{(2,76)} = 3.36, p=0.36$

• Post-Hoc Tukey:
 • Significant difference in 1’ subtidal treatment (most oyster cover)
Final Results

<table>
<thead>
<tr>
<th>After full Fall spawn</th>
<th>Intertidal</th>
<th>1’ Subtidal</th>
<th>3’ Subtidal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oyster</td>
<td>Oyster</td>
<td>Oyster</td>
<td>Oyster</td>
</tr>
</tbody>
</table>

Within two months

- Significant coverage *inside*
- Significant coverage *outside as well on domes*
- Spring spawn

300-500 mature Oysters
High success rate of retention due to confined protected space.
Future Work

- So why is this important?
- Formulation of Advisory Council
 - Scientific Experts, Past Students, Legislators, Business Leaders, Stakeholders, etc.
 - Identify Challenges, mitigating factors
- Oyster Aquaculture: Environmental, Economic, and Legislative challenges.
- In Wakulla County, Oyster Aquaculture is third largest Employer
- After two years, 6-8 Million Oysters in Bay. From Barren Desert to teaming with life CLEAN WATER.
Future Work

- How can we export clean water – deployable?
- RESTORD-Tech (Restoring Seed Through Oyster Reef Dome Technology).
- Sarasota - $44,000,000.00 impact from RED TIDE
- Florida has the second largest coastline /Tourism
- Thousands of years Oyster Reefs were along Eastern Seaboard/ Nature took its course.
- Answers two questions:
 - One of the answers to re-seeding Apalachicola Bay
 - Will effectively combat Red Tide and other HAB’s
Acknowledgements

GSMFC - Funding

WEI Aquaculture Students and Staff

FAMU Graduate/Under Grad Students

Dr. Charles Jagoe (FAMU)
Aquaculture Research

• **Worldwide Decline of Oyster Populations**
 o >1% of historical levels (FAO, 2014)
 o Need for increased oyster production

• **Increased demand of oyster production (consumption)**
 o Additional benefit is increased water quality
 ▪ Cleaner water
 ▪ Improved aquatic habitat

• **Filter Feeding**
 o Remove organic matter
 ▪ Causes low dissolved oxygen levels
 ▪ Lower nutrient loading from terrestrial runoff
Aquaculture Research

- **Waste Water Treatment is Limited**
 - Effective for land-based water
 - Limited to coastal pollution/runoff
 - While there is an increase in coastal pollution/excessive nutrient removal

- **Studies show filter feeding shellfish can remove nutrients**
 - Providing an ecosystem service of water quality improvement
 - (Beseres-Pollack et al., 2013; Bricker et al., 2014, 2015a, 2015b; Ferreira et al., 2007; Filgueira et al., 2014a, 2014b; Lindahl et al., 2005).
Aquaculture Research

- Eutrophication (excessive nutrients)
 - Excessive algal blooms
 - Harmful algal blooms (HABs)
 - Lower Dissolved Oxygen
 - Hypoxic/Anoxic Waters
 - Loss of Seagrass
 - Decreasing habitat
 - Nurseries
 - Less Oxygen