Ecosystem effects of the *Deepwater Horizon* acting through gulf menhaden

Short JW, Geiger HJ, Haney JC, Voss CM, Vozzo ML, Guillory V, Peterson CH

Gulf States Marine Fisheries Commission
68th Annual Spring Meeting

Panama City, Florida
March 13, 2018
OILING \rightarrow \text{SEA BIRD MORTALITY}

\begin{align*}
\text{Sea bird numbers} & \quad \text{DECREASED} \\
\text{Predation pressure} & \\
\text{Menhaden numbers} & \quad \text{INCREASED} \\
\text{Grazing pressure} & \\
\text{Food Supply} & \quad \text{DECREASED}
\end{align*}

Ecological Importance of Gulf Menhaden before DWH

Consume ~ 64% of Primary Production Available at Trophic Level 3.0 within ~ 28,000 km²:

Assume 1° production is 500 g C m⁻², trophic transfer efficiency is 20 - 25%, then production available at trophic level 3.0 is:

\[
500 \text{ g C m}^{-2} \times 0.20 \times 0.25 = 25 \text{ g C m}^{-2}
\]

Gulf menhaden production is ~ 16 g C m⁻², so

\[
16/25 = 64\%
\]

SEDAR 32A ASPIC Model: Gulf menhaden carrying capacity:

76% (Pre-DWH)
Coastal Surface Oil Contamination from Deepwater Horizon & Subsurface PAH Contamination
LDWF Recruitment Index for Gulf menhaden

ZONE 1
Mean=3.8
SD=3.6

ZONE 2
Mean=10.9
SD=6.1

ZONE 3
Mean=14.8
SD=8.6
Le Cren’s Condition Index & Age Structure for Gulf Menhaden

2011

2012

B

West of MR East of MR

West of MR East of MR

Condition Index

Age Class %
Annual Average Weight at Age 1 and at Age 2 of Gulf Menhaden

Data from NMFS
Gulf Menhaden Oil Yield at Daybrook Fisheries, 1971 - 2014
After Deepwater Horizon (2011):

Gulf Menhaden Consumed 104% of Primary Production Available at Trophic Level 3.0 within ~ 28,000 km²:

Assume 1° production is 500 g C m⁻², trophic transfer efficiency is 20 - 25%, then production available at trophic level 3.0 is:

\[500 \text{ g C m}^{-2} \times 0.20 \times 0.25 = 25 \text{ g C m}^{-2} \]

Gulf menhaden production is ~ 26 g C m⁻², so

\[\frac{26}{25} = 104\% \]

(2012: 23/25 = 92%)
Long-Term Ecological Effects of the Deepwater Horizon on the Gulf Menhaden Population

- Population is now at habitat carrying capacity

- Top-down control was important for limiting population abundance

- While abundant, fish are often less nutritious for predators that consume them

- High abundance increases predation pressure by Gulf menhaden on planktonic larvae of other species
Long-Term Risks of Ecological Effects to the Gulf Menhaden Fishery

- Greater variability of oil yields
- Increased risk of population crash
Gulf Menhaden Fishery Management Challenge:

How to manage stock reduction to below habitat carrying capacity