Increasing Oyster Production in the Gulf of Mexico: Adopting High-Density Larval Culture at the Auburn University Shellfish Lab

Scott Rikard
Bill Walton

Auburn University Shellfish Laboratory
School of Fisheries, Aquaculture and Aquatic Sciences
Auburn University
Established in 2003 to conduct practical research for the shellfish industry
Auburn University Shellfish Laboratory

Background
Auburn University Shellfish Laboratory

Initial Hatchery

- Small-scale hatchery
- Oyster larvae and post-set spat primarily for research
2009 – Interest in off-bottom oyster aquaculture begins in Alabama.

2012 – AUSL establishes an oyster aquaculture training program

2017 – 15 oyster farms operating in Alabama.
Auburn University Shellfish Laboratory

Background

Expanded production capability in 2015
Auburn University Shellfish Laboratory

Larval Production

Larvae distributed (millions)

Auburn University Shellfish Laboratory
Seed Production

Seed Distributed (millions)
Primary products
Auburn University Shellfish Laboratory

Primary products
Increasing Oyster Production
GSMFC Grant Objectives

1. Install high-density larval production system
 a) Increase production capacity
 b) Expand production season
 c) Foster commercial hatchery development
 d) Expanded opportunities for research and restoration
2. **Install continuous algal bag production system**

 a) Provide food for high-density larval system

 b) **Training on growing algae**

 c) **Allow for comparison of live algae vs algae concentrates**
3. Install broodstock conditioning system

a) Improve gamete quality and consistency

b) Expand spawning capabilities outside normal season
Increasing Oyster Production

Static vs High-Density Systems

- Tank Size = 4,000L
- Initial Stocking Density = 10/ml (40 million/tank)
- Harvest Density = 3/ml (12 million/tank)

- Tank Size = 400L
- Initial Stocking Density = 100/ml (40 million/tank)
- Harvest Density = 50/ml (20 million/tank)
Increasing Oyster Production

High-Density Larval System

- Climate controlled room
- High density larval tanks
- Algae reservoir
- Algae delivery lines

- Flow-thru water reservoir
- Fine filtration
- In-line heater
- Water delivery lines
Increasing Oyster Production
High-Density Larval System

- Loop system
- 1μm filter cartridges
- In-line heater
- Mag-drive pump

- Flow-thru water reservoir
- Float control valve
- Pre-filtered water
- Return flow
Increasing Oyster Production
High-Density Larval System

- 400L tank
- Banjo screen outlet
- Over-flow

- Over-flow
- Catch screen
Increasing Oyster Production
High-Density Larval System

- Water control valve
- Algae feed valve
- Air inlet
Increasing Oyster Production
High-Density Larval System

- Algae reservoirs
- Automated feed system for algal concentrates

- Algae delivery pump
- Float switch
- Delivery line from algae lab
Increasing Oyster Production

Algae Bag Production System

Algal Concentrates vs Live Algae

Pros
- Reliably available
- Low cost

Cons
- Settling

Pros
- Live – no settling

Cons
- Space
- Cost
- Personnel
Increasing Oyster Production

Continuous Algal Bag System

- Starter cultures
- Two-step flask cultures
- Red and Blue LED grow lights

- Reinforced floor system
- Bags contained in cages
- Continuous filtered water supply
- Continuous harvest
Increasing Oyster Production

Continuous Algal Bag System

- Chlorination tank
- 1μm filter cartridges
- Storage reservoir

- UV sterilization
- 1μm filter cartridge
- Flow to algal bag system
- Return flow to storage reservoir
Increasing Oyster Production

Continuous Algal Bag System

- Cage support stand
- Water delivery line
- Algae harvest line
- Algae harvest sump
- Pump to hatchery
- Float switch control
- Steam generator
- Line sterilization
Increasing Oyster Production
Continuous Algal Bag System

- Air delivery manifold
- Piston air pump
- 1μm air filtration
- UV sterilizer
- CO₂ injection port
- CO2 source
Increasing Oyster Production

Broodstock Conditioning System

• Enclosed, climate controlled room
• Semi flow-thru/recirculating system
Increasing Oyster Production
Broodstock Conditioning System

- Hot/Cold loop for new water
- In-tank heater
- Recirculating pump
- Filter box
- Air supply
- Food supply
- Overflow
Increasing Oyster Production

Broodstock Conditioning System

- Hot/Cold reservoir
- Incoming raw water
- Recirculating loop
- Float valve control
- Air relief valve

- In-line heater
- In-line chiller
Increasing Oyster Production

Broodstock Conditioning System

- Feed System
- Automated peristaltic pump
- Mini-frig
- Algae reservoirs
Increasing Oyster Production
Broodstock Conditioning System

- Programmable feed schedule
- Smart phone functionality
- Up to 150 feedings/24hr
Oyster Hatchery Experience
Auburn University Shellfish Laboratory

Question?